Vera C. Rubin Observatory Data Management # LVV-P72: DM Acceptance Testing, Operations Rehearsal #2 Test Plan and Report **Jeffrey Carlin** **DMTR-231** Latest Revision: 2020-05-27 ### **Abstract** This is the test plan and report for LVV-P72 (DM Acceptance Testing, Operations Rehearsal #2), an LSST milestone pertaining to the Data Management Subsystem. ### **Change Record** | Version | Date | Description | Owner name | |---------|------------|-------------|------------| | | 2020-05-18 | First Draft | J. Carlin | Document curator: J. Carlin Document source location: https://github.com/lsst-dm/DMTR-231 Version from source repository: 8a4f359 ### **Contents** | 1 | Introduction | 1 | |---|---|----| | | 1.1 Objectives | 1 | | | 1.2 System Overview | 1 | | | 1.3 Document Overview | 2 | | | 1.4 References | 2 | | 2 | Test Plan Details | 3 | | | 2.1 Data Collection | | | | 2.2 Verification Environment | | | | 2.3 Related Documentation | | | | 2.4 PMCS Activity | 3 | | 3 | Personnel | 4 | | 4 | Test Campaign Overview | 5 | | | 4.1 Summary | 5 | | | 4.2 Overall Assessment | 5 | | | 4.3 Recommended Improvements | 5 | | 5 | Detailed Test Results | 6 | | | 5.1 Test Cycle LVV-C154 | | | | 5.1.1 Software Version/Baseline | | | | 5.1.2 Configuration | 6 | | | 5.1.3 Test Cases in LVV-C154 Test Cycle | 6 | | | 5.1.3.1 LVV-T196 - Verify implementation of Base to Archive Network | | | | Secondary Link | 6 | | | 5.1.3.2 LVV-T195 - Verify implementation of Base to Archive Network | | | | Reliability | 8 | | | 5.1.3.3 LVV-T194 - Verify implementation of Base to Archive Network | | | | Availability | 10 | 5.1.3.4 LVV-T193 - Verify implementation of Base to Archive Network . 12 ### **Rubin Observatory** | | 5.1.3.5 | LVV-T1830 - Verify Implementation of Scientific Visualization of | | |---|------------------|--|----| | | | Camera Image Data | 13 | | | 5.1.3.6 | LVV-T105 - Verify implementation of Generate Calibration Re- | | | | | port Within Specified Time | 14 | | | 5.1.3.7 | LVV-T182 - Verify implementation of Prefer Computing and Stor- | | | | | age Down | 15 | | | 5.1.3.8 | LVV-T190 - Verify implementation of Base Facility Co-Location | | | | | with Existing Facility | 15 | | | 5.1.3.9 | LVV-T29 - Verify implementation of Raw Science Image Data Ac- | | | | | quisition | 16 | | | 5.1.3.10 | LVV-T32 - Verify implementation of Raw Image Assembly | 17 | | | 5.1.3.11 | LVV-T84 - Verify implementation of Bias Residual Image | 19 | | | 5.1.3.12 | LVV-T85 - Verify implementation of Crosstalk Correction Matrix | 21 | | | 5.1.3.13 | LVV-T47 - Verify implementation of Prompt Processing Calibra- | | | | | tion Report Definition | 23 | | | 5.1.3.14 | LVV-T88 - Verify implementation of Calibration Data Products . | 25 | | | 5.1.3.15 | ${\sf LVV-T90-Verifyimple} mentation of Dark Current Correction Frame$ | | | | | | 27 | | | 5.1.3.16 | LVV-T115 - Verify implementation of Calibration Production Pro- | | | | | cessing | 28 | | | 5.1.3.17 | LVV-T137 - Verify implementation of Data Product Ingest | 30 | | | 5.1.3.18 | LVV-T154 - Verify implementation of Raw Data Archiving Relia- | | | | | bility | 31 | | | 5.1.3.19 | LVV-T191 - Verify implementation of Commissioning Cluster | 32 | | Α | Traceability | | 33 | | | - | | | | В | Acronyms used in | this document | 34 | # LVV-P72: DM Acceptance Testing, Operations Rehearsal #2 Test Plan and Report #### 1 Introduction #### 1.1 Objectives This Acceptance Test campaign aims to verify a small number of DMSR (LSE-61) requirements related to the LSST Science Pipelines. It will be executed in conjunction with Operations Rehearsal #2. This Test Plan aims to demonstrate that the included requirements have been met by the activities carried out during the Operations Rehearsal, and to thus fully verify their completion and readiness for LSST Operations. #### **1.2 System Overview** The tests to be executed are intended to verify that the DM system satisfies a subset of the requirements outlined in the Data Management System Requirements (DMSR; LSE-61). This subset of requirements is related to pipeline algorithms, and was selected for this campaign to coincide with the release of a new version of the LSST Science Pipelines. Additional DMSR requirements will be verified in later Acceptance Test Campaigns. #### **Applicable Documents:** LSE-61 Data Management System Requirements LDM-503 Data Management Test Plan LDM-639 LSST Data Management Acceptance Test Specification (issue 2.1) LDM-643 Proposed DM Ops Rehearsals (Chapter 3 in particular) ? Rubin Observatory Network Verification Baseline The tests will be performed using... DRAFT 1 DRAFT Planning for the Operations Rehearsal is being tracked at this Confluence page. #### 1.3 Document Overview This document was generated from Jira, obtaining the relevant information from the LVV-P72 Jira Test Plan and related Test Cycles (LVV-C154). Section 1 provides an overview of the test campaign, the system under test (Acceptance), the applicable documentation, and explains how this document is organized. Section 2 provides additional information about the test plan, like for example the configuration used for this test or related documentation. Section 3 describes the necessary roles and lists the individuals assigned to them. Section 4 provides a summary of the test results, including an overview in Table 2, an overall assessment statement and suggestions for possible improvements. Section 5 provides detailed results for each step in each test case. The current status of test plan LVV-P72 in Jira is **Draft** . #### 1.4 References - [1] **[LSE-61]**, Dubois-Felsmann, G., Jenness, T., 2018, *LSST Data Management Subsystem Requirements*, LSE-61, URL https://ls.st/LSE-61 - [2] **[LDM-639]**, Guy, L., 2018, *DM Acceptance Test Specification*, LDM-639, URL https://ls.st/LDM-639 - [3] **[LDM-643]**, Johnson, M., Gruendl, R., 2019, *Proposed DM OPS Rehearsals*, LDM-643, URL https://ls.st/LDM-643 - [4] [LDM-142], Kantor, J., 2017, Network Sizing Model, LDM-142, URL https://ls.st/LDM-142 - [5] **[LDM-503]**, O'Mullane, W., Swinbank, J., Jurić, M., Economou, F., 2018, *Data Management Test Plan*, LDM-503, URL https://ls.st/LDM-503 DRAFT 2 DRAFT #### 2 Test Plan Details #### 2.1 Data Collection Observing is not required for this test campaign. #### 2.2 Verification Environment Tests that require code and/or data analysis will use the "Isst-Isp-stable" instance of the Rubin Observatory/LSST Science Platform (LSP), hosted at the LDF, and the "Isst-dev" development cluster at NCSA. #### 2.3 Related Documentation The documentation related to this test campaign should be provided in the following DocuShare Collection (as per Verification Artifacts in Jira test plan LVV-P72). DocuShare Collection Not Specified #### 2.4 PMCS Activity Primavera milestones related to the test campaign. None DRAFT 3 DRAFT ### 3 Personnel The personnel involved in the test campaign is shown in the following table. | | T. Plan LVV-P72 owner: | Jeffrey Carlin | | |-------------------|--------------------------|----------------|---| | | T. Cycle LVV-C154 owner: | Jeffrey Carlin | | | Test Cases | Assigned to | Executed by | Additional Test Personnel | | LVV-T196 | Jeff Kantor | | Ron Lambert (LSST), Albert Astudillo (REUNA), Jeronimo Bezerra (FIU/Am-Light), Matt Kollross (NCSA) | | LVV-T195 | Jeff Kantor | | Ron Lambert (LSST), Albert Astudillo (REUNA), Jeronimo Bezerra (FIU/Am-Light), Matt Kollross (NCSA) | | LVV-T194 | Jeff Kantor | | | | LVV-T193 | Jeff Kantor | | Ron Lambert (LSST) | | LVV-T1830 | Jeffrey Carlin | | | | LVV-T105 | Kian-Tat Lim | | 7 | | LVV-T182 | Robert Gruendl | | | | LVV-T190 | Robert Gruendl | | | | LVV-T29 | Kian-Tat Lim | | | | LVV-T32 | Kian-Tat Lim | | | | LVV-T84 | Robert Lupton | | | | LVV-T85 | Robert Lupton | | | | LVV-T47 | Eric Bellm | | | | LVV-T88 | Robert Lupton | | | | LVV-T90 | Robert Lupton | | | | LVV-T115 | Kian-Tat Lim | | | | LVV-T137 | Colin Slater | | | | LVV-T154 | Colin Slater | | | | LVV-T191 | Robert Gruendl | | | ### **4 Test Campaign Overview** #### 4.1 **Summary** | T. Plan LVV-P72: | | DM Acceptan | ce Testing, Operations Rehearsal #2 | Draft | |--------------------|------|--------------|-------------------------------------|--------------| | T. Cycle LVV-C154: | | DM Acceptan | ce Testing, Operations Rehearsal #2 | Not Executed | | Test Cases | Ver. | Status | Comment | Issues | | LVV-T196 | 1 | Not Executed | | | | LVV-T195 | 1 | Not Executed | | | | LVV-T194 | 1 | Not Executed | | | | LVV-T193 | 1 | Not Executed | | | | LVV-T1830 | 1 | Not Executed | | | | LVV-T105 | 1 | Not Executed | | | | LVV-T182 | 1 | Not Executed | | | | LVV-T190 | 1 | Not Executed | | | | LVV-T29 | 1 | Not Executed | | | | LVV-T32 | 1 | Not Executed | | | | LVV-T84 | 1 | Not Executed | | | | LVV-T85 | 1 | Not Executed | | | | LVV-T47 | 1 | Not Executed | | | | LVV-T88 | 1 | Not Executed | | | | LVV-T90 | 1 | Not Executed | | | | LVV-T115 | 1 | Not Executed | | | | LVV-T137 | 1 | Not Executed | | | | LVV-T154 | 1 | Not Executed | | | | LVV-T191 | 1 | Not Executed | | | Table 2: Test Campaign Summary #### 4.2 Overall Assessment Not yet available. #### **4.3 Recommended Improvements** Not yet available. DRAFT 5 DRAFT #### 5 Detailed Test Results #### 5.1 Test Cycle LVV-C154 Open test cycle DM Acceptance Testing, Operations Rehearsal #2 in Jira. Test Cycle name: DM Acceptance Testing, Operations Rehearsal #2 Status: Not Executed This test cycle verifies a subset of DMSR (LSE-61) requirements in order to verify their completion and readiness for LSST Operations (i.e., that the requirements laid out in LSE-61 have been met by the DM Systems). These acceptance tests are to be carried out during DM Operations Rehearsal #2. #### 5.1.1 Software Version/Baseline Not provided. #### 5.1.2 Configuration Not provided. #### 5.1.3 Test Cases in LVV-C154 Test Cycle #### 5.1.3.1 LVV-T196 - Verify implementation of Base to Archive Network Secondary Link Version 1. Open LVV-T196 test case in Jira. Verify Base to Archive Network Secondary Link failover and capacity, and subsequent recovery primary. Demonstrate the use of the secondary path in "catch-up" mode. #### **Preconditions:** Archiver/Forwarders are configured at Base, connected to REUNA DWDM, loaded with simulated or pre-cursor data. DRAFT 6 DRAFT Archiver/Forwarder receivers or other capability is on configured at LDF, connected to Base - Archive Network. As-built documentation for all of the above is available. Execution status: Not Executed Final comment: #### Detailed steps results: | Step | Step Details | |------|--| | 1 | Description | | | Transfer data between base and archive on primary links over uninterrupted 1 day period. | | | Test Data | | | LATISS, ComCAM, or FullCAM data. | | | Expected Result | | | Data is successfully transferred over primary link at or exceeding rates specified in LDM-142 throughout period. | | | Actual Result | | | Status: Not Executed | | 2 | Description | | | Simulate outage by disconnecting fiber on primary fiber on Base side of Base - Archive Network. | | | Test Data | | | NA | | | Expected Result | | | Network fails over to secondary links in <=60s | | | Actual Result | | | Status: Not Executed | | 3 | Description | | | Transfer data between base and archive over secondary equipment uninterrupted 1 day period. | | | Test Data | | | LATISS, ComCAM, or FullCAM data. | DRAFT 7 DRAFT | | Expected Result | |---|---| | | Data is successfully transferred over secondary link at or exceeding rates specified in LDM-142 throughout period. | | | Actual Result | | | Status: Not Executed | | 4 | Description | | | Restore connection on primary link by reconnecting fiber. | | | | | | Test Data | | | NA | | | Expected Result | | | Network recovers to primary. | | | Actual Result | | | Status: Not Executed | | 5 | Description | | | Demonstrate use of secondary in catch-up mode. | | | Test Data | | | DAQ buffer full of images and associated metadata. | | | Expected Result | | | Images from DAQ buffer and associated metadata are retrievable over secondary path while current observing data is being transferred over primary path. | | | Actual Result | | | Status: Not Executed | #### 5.1.3.2 LVV-T195 - Verify implementation of Base to Archive Network Reliability Version **1**. Open *LVV-T195* test case in Jira. DRAFT 8 DRAFT Verify Base to Archive Network Reliability by demonstrating that the network can recover from outages within baseToArchNetMTTR = 48[hour]. #### **Preconditions**: Archiver/Forwarders are configured at Base, connected to REUNA DWDM, loaded with simulated or pre-cursor data. Archiver/Forwarder receivers or other capability is on configured at LDF, connected to Base - Archive Network. At least 6 months of monitoring data for this link is available. As-built documentation for all of the above is available. Execution status: Not Executed Final comment: #### Detailed steps results: | Step | Step Details | |------|--| | 1 | Description | | | Disconnect primary fiber on base side of Base - Archive network. | | | Test Data | | | LATISS, ComCAM, or FullCAM data. | | | Expected Result | | | Network fails over to secondary path. | | | Actual Result | | | | | | Status: Not Executed | | 2 | Description | | | Simulate diagnosis and repair by elapsed time. | | | | | | | | | Test Data | | | NA | | | Expected Result | DRAFT 9 DRAFT | | Wall clock advances by 48 hours. Data is successfully transferred over secondary path. | |---|--| | | Actual Result | | | Status: Not Executed | | 3 | Description | | | Reconnect primary fiber on base side of Base - Archive network. | | | Test Data | | | NA | | | Expected Result | | | Network recovers to primary path. | | | Actual Result | | | Status: Not Executed | | 4 | Description | | | Analyze fail-over and recovery times. Compare to historical data and extrapolate to MTTR. | | | Expected Result | | | Verify recovery can occur within baseToArchNetMTTR = 48[hour]. Demonstrate reconnection and recovery to transfer of data at or exceeding rates specified in LDM-142. | | | Actual Result | | | Status: Not Executed | #### 5.1.3.3 LVV-T194 - Verify implementation of Base to Archive Network Availability Version 1. Open LVV-T194 test case in Jira. Verify the availability of the Base to Archive Network communications by demonstrating that it meets or exceeds a mean time between failures, measured over a 1-yr period of MTBF > baseToArchNetMTBF (180[day]) #### **Preconditions:** Archiver/Forwarders are configured at Base, connected to REUNA DWDM, loaded with simulated or pre-cursor data. DRAFT 10 DRAFT Archiver/Forwarder receivers or other capability is on configured at LDF, connected to Base - Archive Network. At least 6 months of historical monitoring data on this link is available. As-built documentation for all of the above is available. Execution status: Not Executed Final comment: #### Detailed steps results: | Step | Step Details | |------|---| | 1 | Description | | | Transfer data between base and archive over uninterrupted 1 week period. | | | Test Data | | | LATISS, ComCAM, or FullCAM data. | | | Expected Result | | | Data is successfully transferred during the entire week. | | | Actual Result | | | | | | Status: Not Executed | | 2 | Description | | | Analyze monitoring/performance data, compare to historical data, and extrapolate to a full year, average and peak throughput and latency. | | | Test Data | | | NA | | | Expected Result | | | Extrapolated network availability meets baseToArchNetMTBF = 180[day]. Note that this is for complete loss of transfer service (all paths), not a single path failure with successful fail-over. | | | Actual Result | | | | | | Status: Not Executed | DRAFT 11 DRAFT #### DMTR-231 ### **Rubin Observatory** #### 5.1.3.4 LVV-T193 - Verify implementation of Base to Archive Network Version 1. Open LVV-T193 test case in Jira. Verify that the data acquired by a DAQ can be transferred within the required time, i.e. verify that link is capable of transferring image for prompt processing in oArchiveMaxTransferTime = 5[second], i.e. at or exceeding rates specified in LDM-142. #### **Preconditions:** Archiver/Forwarders are configured at Base, connected to REUNA DWDM, loaded with simulated or pre-cursor data. Archiver/Forwarder receivers or other capability is on configured at LDF, connected to Base - Archive Network. As-built documentation for all of the above is available. Execution status: Not Executed Final comment: #### Detailed steps results: | Step | Step Details | |------|--| | 1 | Description | | | Transfer data between base and archive while monitoring the network over uninterrupted 1 day period (with repeated transfers on normal observing cadence). | | | Test Data | | | LATISS, ComCAM, or FullCAM data. | | | Expected Result | | | Data transfers occur without significant delay or frequent latency spikes. | | | Actual Result | | | | | | Status: Not Executed | | 2 | Description | DRAFT 12 DRAFT | | Analyze the network logs and monitoring system to determine average and peak latency and packet loss statistics. | |-----------------|---| | | Expected Result | | | Data can be transferred within the required time, i.e. verify that link is capable of transferring image for prompt processing in oArchiveMaxTransferTime = 5[second]. Verify transfer of data at or exceeding rates specified in LDM-142 at least 98% of the time. | | | Actual Result | | | Status: Not Executed | | | | | 5.1.3.5
Data | LVV-T1830 - Verify Implementation of Scientific Visualization of Camera Image | | /ersion | 1 . Open <i>LVV-T1830</i> test case in Jira. | | | hat all scientific visualization of camera image data uses the coordinate systems de-
LSE-349. | | Precon | nditions: | | Executio | on status: Not Executed | | inal co | mment: | | Detailed | d steps results: | | Step | Step Details | | 1 | Description | | | Expected Result | | | Actual Result | DRAFT 13 DRAFT | | |
 | | |---------|--------------|------|--| | Status: | Not Executed | | | # 5.1.3.6 LVV-T105 - Verify implementation of Generate Calibration Report Within Specified Time Version **1**. Open *LVV-T105* test case in Jira. Verify that the DMS can generate a night Calibration Report in both human-readable and machine-parseable forms. #### **Preconditions**: Execution status: Not Executed Final comment: #### Detailed steps results: | Step | Step Details | | | | | | | |------|---|--|--|--|--|--|--| | 1 | Description | | | | | | | | | Execute single-day operations rehearsal | | | | | | | | | Expected Result | | | | | | | | | Actual Result | | | | | | | | | Status: Not Executed | | | | | | | | 2 | Description | | | | | | | | | Observe calibration report is generated on time and with correct contents | | | | | | | | | Expected Result | | | | | | | | | | | | | | | | DRAFT 14 DRAFT | | | | | | _ | | _ |
 |
_ | _ | _ |
 |
 | _ | _ |
 | _ | _ |
 | _ | _ |
 |
_ | _ | _ |
 | _ | _ | _ | |---------|-----|----|----|----|----|---|---|------|-------|---|---|------|------|---|---|------|---|---|------|---|---|------|-------|---|---|------|---|---|---| | Status: | Not | Ex | ec | ut | ed | l | #### 5.1.3.7 LVV-T182 - Verify implementation of Prefer Computing and Storage Down Version 1. Open LVV-T182 test case in Jira. Only build compute or storage facilities at the summit that are justified by operational need or to prevent loss of data during networking downtimes. #### **Preconditions**: Execution status: Not Executed Final comment: #### Detailed steps results: | Step | Step Details | |------|----------------------| | 1 | Description | | | Analyze design | | | Expected Result | | | Actual Result | | | Status: Not Executed | # 5.1.3.8 LVV-T190 - Verify implementation of Base Facility Co-Location with Existing Facility DRAFT 15 DRAFT Version 1. Open LVV-T190 test case in Jira. Verify that the Base Facility is located at an existing known supported facility. #### **Preconditions**: Execution status: Not Executed Final comment: #### Detailed steps results: | Step | Step Details | |------|-----------------------------| | 1 | Description | | | Analyze design | | | Expected Result | | | Actual Result | | | Status: Not Executed | #### 5.1.3.9 LVV-T29 - Verify implementation of Raw Science Image Data Acquisition Version **1**. Open *LVV-T29* test case in Jira. Verify acquisition of raw data from L1 Test Stand DAQ while simulating all modes #### **Preconditions**: Execution status: Not Executed DRAFT 16 DRAFT | | าล | | | | | |--|----|--|--|--|--| | | | | | | | #### Detailed steps results: | Step | Step Details | |------|---| | 1 | Description | | | Ingest raw data from L1 Test Stand DAQ, simulating each observing mode | | | Expected Result | | | Actual Result | | | Status: Not Executed | | 2 | Description | | | Observe image and its metadata is present and queryable in the Data Backbone. | | | Expected Result | | | Well-formed image data with appropriate associated metadata. | | | Actual Result | | | | | | Status: Not Executed | #### 5.1.3.10 LVV-T32 - Verify implementation of Raw Image Assembly Version **1**. Open *LVV-T32* test case in Jira. Verify that the raw exposure data from all readout channels in a sensor can be assembled into a single image, and that all required/relevant metadata are associated with the image data. #### **Preconditions**: Execution status: Not Executed DRAFT 17 DRAFT ### Final comment: #### Detailed steps results: | Step | Step Details | | | | | | | |------|---|--|--|--|--|--|--| | 1 | Description | | | | | | | | | Ingest data from the L1 Camera Test Stand DAQ. | | | | | | | | | Expected Result | | | | | | | | | Actual Result | | | | | | | | | Status: Not Executed | | | | | | | | 2 | Description | | | | | | | | | Simulate all different modes of data gathering. | | | | | | | | | Expected Result | | | | | | | | | Actual Result | | | | | | | | | Status: Not Executed | | | | | | | | 3 | Description | | | | | | | | | Verify that a raw image is constructed in correct format. | | | | | | | | | Expected Result | | | | | | | | | A single raw image combining data from all readout channels for a given sensor. | | | | | | | | | Actual Result | | | | | | | | | Status: Not Executed | | | | | | | | 4 | Description | | | | | | | | | Verify that a raw image is constructed with correct metadata. | | | | | | | | | Expected Result | | | | | | | | | Image header or ancillary table contains the required metadata about the observing context in which data were gathered. | | | | | | | | | Actual Result | | | | | | | | | Status: Not Executed | | | | | | | DRAFT 18 DRAFT #### 5.1.3.11 LVV-T84 - Verify implementation of Bias Residual Image Version **1**. Open *LVV-T84* test case in Jira. Verify that DMS can construct a bias residual image that corrects for temporally-stable bias structures. Verify that DMS can do this on demand. | - | | | | | • . • | | | | |----|----|----|---|---|-------|--------------|---|----| | D. | ra | CO | 'n | М | 11 | \mathbf{a} | n | c. | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | u | | w | | Э. | Execution status: Not Executed Final comment: #### Detailed steps results: | Step | Step Details | |------|--| | 1 | Description | | | Identify the location of an appropriate precursor dataset. | | | Expected Result | | | Actual Result | | | Status: Not Executed | | 2 | Description | | | Identify the path to the data repository, which we will refer to as 'DATA/path', then execute the following: | | | Example Code | | | import lsst.daf.persistence as dafPersist | | | <pre>butler = dafPersist.Butler(inputs='DATA/path')</pre> | | | Expected Result | | | Butler repo available for reading. | | | Actual Result | DRAFT 19 DRAFT | | Status: Not Executed | | | | | | | | | | |---|---|--|--|--|--|--|--|--|--|--| | 3 | Description | | | | | | | | | | | | Import the standard libraries required for the rest of this test: | | | | | | | | | | | | Example Code | | | | | | | | | | | | import osimport lsst.afw.display as afwDisplay | | | | | | | | | | | | from lsst.daf.persistence import Butler
from lsst.ip.isr import lsrTask | | | | | | | | | | | | from firefly_client import FireflyClient | | | | | | | | | | | | from IPython.display import IFrame | | | | | | | | | | | | Expected Result | | | | | | | | | | | | Actual Result | | | | | | | | | | | | Status: Not Executed | | | | | | | | | | | 4 | Description | | | | | | | | | | | | Ingest the dataset from step 1 using the Butler (e.g., following example code below). | | | | | | | | | | | | Example Code | | | | | | | | | | | | butler = Butler(\$REPOSITORY_PATH) | | | | | | | | | | | | raw = butler.get("raw", visit=\$VISIT_ID, detector=2) | | | | | | | | | | | | bias = butler.get("bias", visit=\$VISIT_ID, detector=2) | | | | | | | | | | | | Expected Result | | | | | | | | | | | | Actual Result | | | | | | | | | | | | Status: Not Executed | | | | | | | | | | | 5 | Description | | | | | | | | | | | | Display the bias image and inspect that its pixels contain unique values. | | | | | | | | | | | | Expected Result | | | | | | | | | | | | A relatively flat image showing the bias level with roughly Poisson noise. | | | | | | | | | | | | Actual Result | | | | | | | | | | | | Status: Not Executed | | | | | | | | | | | 6 | Description | | | | | | | | | | Configure and run an Instrument Signature Removal (ISR) task on the raw data. Most corrections are disabled for simplicity, but the bias frame is applied. ### Example Code isr_config = IsrTask.ConfigClass() isr_config.doDark=False isr_config.doFlat=False isr_config.doFringe=False isr_config.doDefect=False $isr_config.doAddDistortionModel=False\\$ isr_config.doLinearize=False isr = IsrTask(config=isr_config) result = isr.run(raw, bias=bias) **Expected Result** A trimmed, bias-corrected image in 'result'. **Actual Result** Status: Not Executed 7 Description Display the 'result' image and confirm that the bias correction has been performed. **Expected Result** A displayed image with bias removed (i.e., typical background counts reduced relative to the raw frame). **Actual Result** Status: **Not Executed** #### 5.1.3.12 LVV-T85 - Verify implementation of Crosstalk Correction Matrix Version **1**. Open *LVV-T85* test case in Jira. Verify that the DMS can generate a cross-talk correction matrix from appropriate calibration data. Verify that the DMS can measure the effectiveness of the cross-talk correction matrix. DRAFT 21 DRAFT Description | Precor | nditions: | |----------|--| | Executi | on status: Not Executed | | Final co | omment: | | Detaile | d steps results: | | Step | Step Details | | 1 | Description | | | Identify an appropriate calibration dataset that can be used to derive the crosstalk correction matrix. | | | Expected Result | | | Actual Result | | | Status: Not Executed | | 2 | Description | | | Execute the Calibration Products Production payload. The payload uses raw calibration images and information from the Transformed EFD to generate a subset of Master Calibration Images and Calibration Database entries in the Data Backbone. | | | Expected Result | | | Actual Result | | | Status: Not Executed | | 3 | Description | | | Confirm that the expected Master Calibration images and Calibration Database entries are present and well-formed. | | | Expected Result | | | Actual Result | | | Status: Not Executed | DRAFT 22 DRAFT | | Confirm that the crosstalk correction matrix is produced and persisted. | |---|---| | | Expected Result | | | A correction matrix quantifying what fraction of the signal detected in any given amplifier on each sensor in the focal plane appears in any other amplifier. | | | Actual Result | | | Status: Not Executed | | 5 | Description | | | Apply the crosstalk correction to simulated images, and confirm that the correction is performing as expected. | | | Expected Result | | | A noticeable difference between images before and after applying the correction. | | | Actual Result | | | Status: Not Executed | # 5.1.3.13 LVV-T47 - Verify implementation of Prompt Processing Calibration Report Definition Version 1. Open LVV-T47 test case in Jira. Verify that the DMS produces a Prompt Processing Calibration Report. Specifically check that this report is capable of identifying when aspects of the telescope or camera are changing with time. #### **Preconditions:** Execution status: Not Executed Final comment: DRAFT 23 DRAFT #### Detailed steps results: | Step | Step Details | |------|--| | 1 | Description | | | Identify precursor and simulated calibration datasets on which to run the L1 calibration pipeline. | | | Expected Result | | | Actual Result | | | Status: Not Executed | | 2 | Description | | | Execute the Daily Calibration Products Update payload. The payload uses raw calibration images and information from the Transformed EFD to generate a subset of Master Calibration Images and Calibration Database entries in the Data Backbone. | | | Expected Result | | | Actual Result | | | Status: Not Executed | | 3 | Description | | | Confirm that the expected Master Calibration images and Calibration Database entries are present and well-formed. | | | Expected Result | | | Actual Result | | | Status: Not Executed | | 4 | Description | | | Check that a dynamic report is created that triggers alerts if calibrations go out of range. | | | Expected Result | | | A dynamic report is available via UI to users, and if any out-of-spec changes have occurred, alerts have been issued. | | | Actual Result | | | Status: Not Executed | | 5 | Description | DRAFT 24 DRAFT | Stat | us: Not Execute | d | | | | | | | | | | |------|--------------------------|-------------|-----------|----------------------|-----------------------|-----------------|---------|-------|----------|-------|------------| | Actı | al Result | | | | | | | | | | | | | chived version of the | calibration | report is | available
– – – – | and will b
– – – – | e reta
– – – | ined in | a sta | itic fil | e for | mat
– – | | Exp | ected Result | | | | | | | | | | | | | k that a static report i | | | | | | | | | | | #### 5.1.3.14 LVV-T88 - Verify implementation of Calibration Data Products Version 1. Open LVV-T88 test case in Jira. Verify that the DMS can produce and archive the required Calibration Data Products: cross talk correction, bias, dark, monochromatic dome flats, broad-band flats, fringe correction, and illumination corrections. #### **Preconditions**: Execution status: Not Executed Final comment: #### Detailed steps results: | Step | Step Details | |------|--| | 1 | Description | | | Identify a suitable set of calibration frames, including biases, dark frames, and flat-field frames. | | | Expected Result | | | Actual Result | | | Status: Not Executed | DRAFT 25 DRAFT | 2 | Description | |---|--| | | Execute the Calibration Products Production payload. The payload uses raw calibration images and information from the Transformed EFD to generate a subset of Master Calibration Images and Calibration Database entries in the Data Backbone. | | | Expected Result | | | Actual Result | | | Status: Not Executed | | 3 | Description | | | Confirm that the expected Master Calibration images and Calibration Database entries are present and well-formed. | | | Expected Result | | | Actual Result | | | Status: Not Executed | | 4 | Description | | | Confirm that the expected data products are created, and that they have the expected properties. | | | Expected Result | | | A full set of calibration data products has been created, and they are well-formed. | | | Actual Result | | | Status: Not Executed | | 5 | Description | | | Test that the calibration products are archived, and can readily be applied to science data to produce the desired corrections. | | | Expected Result | | | Confirmation that application of the calibration products to processed data has the desired effects. | | | Actual Result | | | Status: Not Executed | #### 5.1.3.15 LVV-T90 - Verify implementation of Dark Current Correction Frame Version **1**. Open *LVV-T90* test case in Jira. Verify that the DMS can produce a dark correction frame calibration product. Verify that the DMS can determine the effectiveness of a dark correction and determine how often it should be updated. #### **Preconditions:** Execution status: Not Executed Final comment: #### Detailed steps results: | Step | Step Details | |------|---| | 1 | Description | | | Identify the path to a dataset containing dark frames (i.e., exposures taken with the shutter closed). | | | Expected Result | | | Actual Result | | | Status: Not Executed | | 2 | Description | | | Execute the relevant steps from 'cp_pipe' (the calibration pipeline) to produce dark correction frames. | | | Expected Result | | | Actual Result | | | Status: Not Executed | | 3 | Description | | | Inspect the resulting dark correction frame to confirm that it appears as expected. | DRAFT 27 DRAFT | | Expected Result | |---|---| | | A well-formed dark correction frame is present and accessible via the Data Butler. | | | Actual Result | | | Status: Not Executed | | 4 | Description | | | Determining whether the dark correction is being done properly will require on-sky science data. The dark correction can be applied to these frames and the results inspected to ensure that the correction was correctly measured and applied. | | | Expected Result | | | Applying the dark correction to a dataset produces noticeable differences between the original frame(s) and the corrected outputs. | | | Actual Result | | | Status: Not Executed | #### 5.1.3.16 LVV-T115 - Verify implementation of Calibration Production Processing Version 1. Open LVV-T115 test case in Jira. Execute CPP on a variety of representative cadences, and verify that the calibration pipeline correctly produces necessary calibration products. #### **Preconditions**: Execution status: Not Executed Final comment: Detailed steps results: | Step | Step Details | |------|--| | 1 | Description | | | Identify a suitable set of calibration frames, including biases, dark frames, and flat-field frames. | | | Expected Result | | | Actual Result | | | Status: Not Executed | | 2 | Description | | | Execute the Calibration Products Production payload. The payload uses raw calibration images and information from the Transformed EFD to generate a subset of Master Calibration Images and Calibration Database entries in the Data Backbone. | | | Expected Result | | | Actual Result | | | Status: Not Executed | | 3 | Description | | | Confirm that the expected Master Calibration images and Calibration Database entries are present and well-formed. | | | Expected Result | | | Actual Result | | | Status: Not Executed | | 4 | Description | | | Confirm that the expected data products are created, and that they have the expected properties. | | | Expected Result | | | Repos containing valid calibration products that are well-formed and ready to be applied to processed datasets. | | | Actual Result | | | Status: Not Executed | #### 5.1.3.17 LVV-T137 - Verify implementation of Data Product Ingest Version 1. Open LVV-T137 test case in Jira. Verify that data products can be ingested. #### **Preconditions**: Execution status: Not Executed Final comment: #### Detailed steps results: | Step | Step Details | |------|--| | 1 | Description | | | Identify a suitable set of raw data to be run through "mini-DRP" processing. | | | Expected Result | | | Actual Result | | | Status: Not Executed | | 2 | Description | | | Process data with the Data Release Production payload, starting from raw science images and generating science data products, placing them in the Data Backbone. | | | Expected Result | | | Actual Result | | | Status: Not Executed | | 3 | Description | | | Identify the path to the data repository, which we will refer to as 'DATA/path', then execute the following: | | | Example Code | DRAFT 30 DRAFT Step Details Step | | <pre>import lsst.daf.persistence as dafPersist butler = dafPersist.Butler(inputs='DATA/path')</pre> | |--------|---| | | Expected Result | | | Butler repo available for reading. | | | Actual Result | | | Status: Not Executed | | 4 | Description | | | Confirm that the data products from the DRP processing have been ingested into the Data Backbone. | | | Expected Result | | | Processed images, catalogs, calibration information, and other related data products are present and accessible via the Butler. | | | Actual Result | | | Status: Not Executed | | 5.1.3. | 18 LVV-T154 - Verify implementation of Raw Data Archiving Reliability | | Versio | on 1 . Open <i>LVV-T154</i> test case in Jira. | | Verify | that raw images are reliably archived. | | Preco | onditions: | | Execu | tion status: Not Executed | | Final | comment: | | Detail | ed steps results: | DRAFT 31 DRAFT | | Status: Not Executed | |---|---| | | Actual Result | | | Expected Result | | | Analyze sources of loss or corruption after mitigation to compute estimated reliability | | 1 | Description | #### 5.1.3.19 LVV-T191 - Verify implementation of Commissioning Cluster Version 1. Open LVV-T191 test case in Jira. Verify that the Commissioning Cluster has sufficient Compute/Storage/LAN at the Base Facility to support Commissioning. #### **Preconditions**: Execution status: Not Executed Final comment: #### Detailed steps results: | Step | Step Details | |------|-----------------------------| | 1 | Description | | | Analyze design and budget | | | Expected Result | | | Actual Result | | | Status: Not Executed | DRAFT 32 DRAFT ### **A** Traceability | Test Case | VE Key | VE Summary | |-----------|-----------|--| | LVV-T29 | LVV-8 | DMS-REQ-0018-V-01: Raw Science Image Data | | | | Acquisition | | LVV-T32 | LVV-11 | DMS-REQ-0024-V-01: Raw Image Assembly | | LVV-T47 | LVV-43 | DMS-REQ-0101-V-01: Level 1 Calibration Report | | | | Definition | | LVV-T84 | LVV-23 | DMS-REQ-0060-V-01: Bias Residual Image | | LVV-T85 | LVV-24 | DMS-REQ-0061-V-01: Crosstalk Correction Matrix | | LVV-T88 | LVV-57 | DMS-REQ-0130-V-01: Calibration Data Products | | LVV-T90 | LVV-113 | DMS-REQ-0282-V-01: Dark Current Correction | | | | Frame | | LVV-T105 | LVV-42 | DMS-REQ-0100-V-01: Generate Calibration Report | | | | Within Specified Time | | LVV-T115 | LVV-120 | DMS-REQ-0289-V-01: Calibration Production | | | | Processing | | LVV-T137 | LVV-130 | DMS-REQ-0299-V-01: Data Product Ingest | | LVV-T154 | LVV-140 | DMS-REQ-0309-V-01: Raw Data Archiving | | | | Reliability | | LVV-T182 | LVV-72 | DMS-REQ-0170-V-01: Prefer Computing and | | | | Storage Down | | LVV-T190 | LVV-80 | DMS-REQ-0178-V-01: Base Facility Co-Location | | | | with Existing Facility | | LVV-T191 | LVV-147 | DMS-REQ-0316-V-01: Commissioning Cluster | | LVV-T193 | LVV-81 | DMS-REQ-0180-V-01: Base to Archive Network | | LVV-T194 | LVV-82 | DMS-REQ-0181-V-01: Base to Archive Network | | | | Availability | | LVV-T195 | LVV-83 | DMS-REQ-0182-V-01: Base to Archive Network | | | | Reliability | | LVV-T196 | LVV-84 | DMS-REQ-0183-V-01: Base to Archive Network | | | | Secondary Link | | LVV-T1830 | LVV-18465 | DMS-REQ-0395-V-01: Scientific Visualization of | | | | Camera Image Data_1 | | | | | DRAFT 33 DRAFT ### **B** Acronyms used in this document | Acronym | Description | | |---------|---|--| | | | | | CPP | Calibration Production Processing | | | DAQ | Data Acquisition System | | | DM | Data Management | | | DMS | Data Management Subsystem | | | DMS-REQ | Data Management System Requirements prefix | | | DMSR | DM System Requirements; LSE-61 | | | DRP | Data Release Production | | | DWDM | Dense Wave Division Multiplex | | | EFD | Engineering and Facility Database | | | FIU | Florida International University | | | ISR | Instrument Signal Removal | | | L1 | Lens 1 | | | LAN | Local Area Network | | | LATISS | LSST Atmospheric Transmission Imager and Slitless Spectrograph | | | LDF | LSST Data Facility | | | LDM | LSST Data Management (Document Handle) | | | LSE | LSST Systems Engineering (Document Handle) | | | LSP | LSST Science Platform (now Rubin Science Platform) | | | LSST | Legacy Survey of Space and Time (formerly Large Synoptic Survey Tel | | | | scope) | | | MTBF | Mean Time Between Failures | | | MTTR | Mean Time To Repair | | | NCSA | National Center for Supercomputing Applications | | | PMCS | Project Management Controls System | | | REUNA | Red Universitaria Nacional | | | UI | User Interface | | | VE | vendor estimate | | DRAFT 34 DRAFT